Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Gene editing technique eliminates population of mosquitoes
The technique was utilised to target the Anopheles gambiae mosquito that is responsible for malaria transmission.
Study offers hope in the fight against malaria

Scientists have used gene editing technology to wipe out a population of caged mosquitoes for the first time.

Researchers from Imperial College London used a technique called ’gene drive’ to spread a genetic modification that blocks female production.

The technique was utilised to target the Anopheles gambiae mosquito that is responsible for malaria transmission. Researchers hope that mosquitoes carrying a gene drive could be released in the future to control wild mosquito populations.

Lead researcher Professor Andrea Crisanti, from the Department of Life Sciences at Imperial, said: “This breakthrough shows that gene drive can work, providing hope in the fight against a disease that has plagued mankind for centuries.

“There is still more work to be done, both in terms of testing the technology in larger lab-based studies and working with affected countries to assess the feasibility of such an intervention.”

In the study, the team targeted a gene called ‘doublesex’ which is responsible for whether a mosquito develops as a male or as a female. They engineered a gene drive solution to alter a region of the doublesex gene that is responsible for female development.

Males and females who carried the modified gene showed no changes. However, females with two copies of the modified gene displayed male and female characteristics, failed to bite, and did not lay eggs.

“It will still be at least 5-10 years before we consider testing any mosquitoes with gene drive in the wild, but now we have some encouraging proof that we’re on the right path,” Professor Crisanti continued. “Gene drive solutions have the potential one day to expedite malaria eradication by overcoming the barriers of logistics in resource-poor countries.”

The study is published in the journal Nature Biotechnology.

Become a member or log in to add this story to your CPD history

BSAVA partners with BVA Live 2026

News Story 1
 BSAVA is to partner with BVA Live (11-12 June 2026) to champion clinical research.

The organisation will be supporting BVA Live's Clinical Abstracts programme, showcasing selected abstracts of veterinary research throughout the event.

The clinical abstracts can be on any small animal veterinary subject, and must be based on research undertaken in industry, practice or academia. Abstracts can be presented in poster or oral formats.

Submissions will open on 15th December 2025, and close on 6th March 2026. You can register interest here

Click here for more...
News Shorts
Nominations open for RCVS and VN Council elections

The nomination period for the 2026 RCVS Council and VN Council elections is now open, with three veterinary surgeon seats and two veterinary nurse seats available.

Prospective candidates can download an information pack and nomination form from the RCVS website. Individuals can nominate themselves for the elections, with the results to be announced in the spring.

Clare Paget, the recently appointed RCVS Registrar and elections returning officer, said: "If you want to play your part in influencing and moulding how the professions are regulated, and making key decisions on matters of great importance to your peers, the public and animal health and welfare, please consider standing for RCVS Council or VN Council next year."

Nominations close at 5pm on Saturday, 31 January 2026.