Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel

Octopus arms make decisions independently of the brain - study
The model depicts information flow between the animal's suckers, arms and brains.
Researchers look for patterns in the octopus’ nervous system

Researchers studying the behaviour and neuroscience of octopuses have demonstrated, for the first time, how octopus arms may be able to make decisions independently of the brain.

A new model, created by the University of Washington, depicts information flow between the animal’s suckers, arms and brain.

Scientists say the model supports previous findings that octopus’ suckers initiate action in response to information their obtain from their surroundings, coordinating with neighbouring suckers along the arm. The arms then process sensory and motor information, and muster collective action in the peripheral nervous system, without waiting on commands from the brain.

Dominic Sivitilli, a graduate student in behavioural neuroscience and astrobiology at the University of Washington in Seattle, said the result is an arm-up decision mechanism rather than the brain-down mechanism that is typical of humans.

In the study, Sivitilli and his colleagues gave the octopuses interesting, new objects to investigate, such as textured rocks, Lego and elaborate mazes with food inside. They then looked for patterns that revealed how the octopus' nervous system delegates among the arms as the octopus approaches a task or reacts to new stimuli.

The scientists observed the octopus exploring the objects in its tank and looking for food using a camera and a computer program. The program quantified movements of the arms, tracking how the arms work together in synchrony, suggesting direction from the brain, or asynchronously, independent decision-making in each arm.

David Gire, a neuroscientist at the University of Washington and Sivitilli's advisor for the project said: “You're seeing a lot of little decisions being made by these distributed ganglia, just by watching the arm move, so one of the first things we're doing is trying to break down what that movement actually looks like, from a computational perspective.

"What we're looking at, more than what's been looked at in the past, is how sensory information is being integrated in this network while the animal is making complicated decisions."

Become a member or log in to add this story to your CPD history

FIVP launches CMA remedies survey

News Story 1
 FIVP has shared a survey, inviting those working in independent practice to share their views on the CMA's proposed remedies.

The Impact Assessment will help inform the group's response to the CMA, as it prepares to submit further evidence to the Inquiry Group. FIVP will also be attending a hearing in November.

Data will be anonymised and used solely for FIVP's response to the CMA. The survey will close on Friday, 31 October 2025. 

Click here for more...
News Shorts
Free webinar explores congenital heart disease in dogs

A free webinar is to provide veterinary professionals, dog breeders and pet owners an new insights into congenital heart disease.

Chris Linney, a cardiology specialist and Veterinary Cardiovascular Society (VSC) member, will present the webinar from 7.00pm to 8.30pm on Wednesday, 12 November.

Dr Linney will explore the types, causes and clinical presentation of congenital heart conditions. This will include diagnostic approaches, treatment pathways and emerging research opportunities.

The session is the third to be organised by The Kennel Club, with the VCS, following an introductory webinar and a talk on acquired heart disease. Dr Linney's webinar consists of a one-hour presentation, followed by a 30-minute question and answer session.

Dr Linney said: "This webinar will be an opportunity to deepen understanding - not just of the diseases themselves, but of how breeders, vets and owners can work together to support affected dogs and improve outcomes for future generations."

Click here to register for the webinar.