Your data on MRCVSonline
The nature of the services provided by Vision Media means that we might obtain certain information about you.
Please read our Data Protection and Privacy Policy for details.

In addition, (with your consent) some parts of our website may store a 'cookie' in your browser for the purposes of
functionality or performance monitoring.
Click here to manage your settings.
If you would like to forward this story on to a friend, simply fill in the form below and click send.

Your friend's email:
Your email:
Your name:
 
 
Send Cancel
Soay Sheep Hold Key to Body Clock Genes
Scientists studied thousands of genes in Soay sheep. This breed, which dates back to the Bronze Age, is considered to be one of the most primitive with seasonal body clocks unaffected by cross breeding throughout the centuries.
Scientists have studied thousands of genes in Soay sheep and discovered two "body clock" genes that reveal how seasonal changes in hormones are controlled and could ultimately help find treatments for seasonal affective disorder.

Researchers at the Universities of Edinburgh and Manchester also found that one of these genes (EYA3) has a similar role in both birds and mammals, showing a common link that has been conserved for more than 300 million years.

Scientists studied thousands of genes in Soay sheep. This breed, which dates back to the Bronze Age, is considered to be one of the most primitive with seasonal body clocks unaffected by cross breeding throughout the centuries.

For a long time, scientists had speculated that a key molecule – termed tuberalin – was produced in the pituitary gland at the base of the brain and sent signals to release hormones involved in driving seasonal changes.

However, until now scientists have had no idea about the nature of this molecule, how it works or how it is controlled.

The team focussed on a part of the brain that responds to melatonin – a hormone known to be involved in seasonal timing in mammals.  

The study revealed a candidate molecule for the elusive tuberalin, which communicates within the pituitary gland to signal the release of another hormone – prolactin – when days start getting longer. This helps animals adapt to seasonal changes in the environment.

The researchers, whose findings are published in the journal Current Biology, subsequently identified two genes – TAC1 and EYA3 – that were both activated early when natural hormone levels rise due to longer days.

Professor Dave Burt, of The Roslin Institute at the University of Edinburgh, said: "For more than a decade scientists have known about the presence of this mysterious molecule tuberalin, but until now nobody has known quite how it worked. Identifying these genes not only sheds light on how our internal annual body clocks function but also shows a key link between birds and  mammals that has been conserved over 300 million years."

The study suggests that the first gene TAC1 could only work when the second gene EYA3, which is also found in birds, was present. The second gene may act to regulate TAC 1 so that it could be switched on in response to increasing day length.

Professor Andrew Loudon, of the University of Manchester's Faculty of Life Sciences, said: "A lot of our behaviour is controlled by seasons. This research sheds new light on how animals adapt to seasonal change, which impacts on factors including hibernation, fat deposition and reproduction as well as the ability to fight off diseases."

Become a member or log in to add this story to your CPD history

Greyhound Board announces change to vaccination guidance

News Story 1
 The Greyhound Board of Great Britain has published new vaccination guidance, with all greyhounds registered from 1 January, 2027 required to have the L4 leptospirosis vaccination, rather than L2.

The change comes in response to the reduced availability of the 'L2' Leptospirosis vaccine across the UK, and aims to support best biosecurity practice across the racing greyhound population.

GBGB veterinary director Simon Gower, said "While rare, Leptospirosis is a serious infectious disease that can affect both dogs and humans, so it is vital that we offer our greyhounds the broadest possible protection.  

Click here for more...
News Shorts
Free webinar explores congenital heart disease in dogs

A free webinar is to provide veterinary professionals, dog breeders and pet owners an new insights into congenital heart disease.

Chris Linney, a cardiology specialist and Veterinary Cardiovascular Society (VSC) member, will present the webinar from 7.00pm to 8.30pm on Wednesday, 12 November.

Dr Linney will explore the types, causes and clinical presentation of congenital heart conditions. This will include diagnostic approaches, treatment pathways and emerging research opportunities.

The session is the third to be organised by The Kennel Club, with the VCS, following an introductory webinar and a talk on acquired heart disease. Dr Linney's webinar consists of a one-hour presentation, followed by a 30-minute question and answer session.

Dr Linney said: "This webinar will be an opportunity to deepen understanding - not just of the diseases themselves, but of how breeders, vets and owners can work together to support affected dogs and improve outcomes for future generations."

Click here to register for the webinar.